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Abstract 

When density distributions in crystals are reconstructed 
from 3D diffraction data, a problem sometimes occurs 
when the spatial resolution in one given direction is very 
small compared to that in perpendicular directions. In 
this case, a 2D projected density is usually reconstructed. 
For this task, the conventional Fourier inversion method 
only makes use of those structure factors measured in the 
projection plane. All the other structure factors contribute 
zero to the reconstruction of a projected density. On the 
contrary, the maximum-entropy method uses all the 3D 
data, to yield 3D-enhanced 2D projected density maps. It 
is even possible to reconstruct a projection in the extreme 
case when not one structure factor in the plane of 
projection is known. In the case of poor resolution along 
one given direction, a Fourier inversion reconstruction 
gives very low quality 3D densities 'smeared' in the third 
dimension. The application of the maximum-entropy 
procedure reduces the smearing significantly and reason- 
ably well resolved projections along most directions can 
now be obtained from the MaxEnt 3D density. To 
illustrate these two ideas, particular examples based on 
real polarized neutron diffraction data sets are presented. 

Introduction 

Diffraction techniques are widely used for the investiga- 
tion of microscopic density distributions in crystals 
(charge, spin etc.). These methods essentially provide 
information about the Fourier components of the density 
to be determined. Consequently, the inverse Fourier (IF) 
reconstruction plays a key role in the data-treatment 
procedures (see, for instance, Buerger, 1960). For 
example, in a polarized neutron diffraction experiment, 
one measures the so-called flipping ratios R of Bragg 
reflections hkl from a single-crystal sample. From the 
R(hkl)'s, the Fourier components of the periodic spin 
(magnetization) density S(r) in the crystal (the magnetic 
structure factors) FM(hkI) may be deduced. These are 
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related to S(r) by 

FM(hkl) = fS ( r )  exp[2zri(hx + ky + lz)]d3r, 
(1) 

r = (x,y,z). 

Several different approaches to solving the IF problem 
exist. One of them consists in constructing a parame- 
trized model of the density and refining the parameters to 
best fit the experimental diffraction data. For example, 
the spin density may be expanded into a multipolar series 
around the nuclei (Gillon & Schweizer 1989). The 
number of parameters in the model should be less 
(desirably much less) than the number of data. Devising 
such a model implies additional assumptions regarding 
what the reconstructed density should be like via the 
parameters required to describe it. 

Direct model-independent methods, which are the 
concern of this paper, use no knowledge of what the spin 
density should look like and reconstruct the density 
distribution using no information but the experimental 
data. The most straightforward direct approach, Fourier 
synthesis (Fourier inversion), has been widely used for 
diffraction data treatment. One calculates the inverse 
Fourier sum including only those coefficients that have 
been measured: 

S(r) = ( l /V)  ~ FM(hkl)exp[-2rri(hx + ky + lz)]. (2) 
h,k,l 

Implementations of direct methods may use many 
more variables than data, such as the values of the 
density in pixels of a grid in the direct space. For this 
reason and since the experimental data are never 
complete (only a part of. the Fourier components may 
be experimentally measured), the solution to the IF 
problem is not unique: 

(i) All the density distributions (maps) within some 
reasonable range of agreement with experiment (for 
example, which correspond to X 2 ~ Nobs, the number of 
observed structure factors) are acceptable. 
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(ii) An acceptable map may correspond to any values 
of unmeasured Fourier components. Thus, a logical 
criterion is required to choose the 'best' map among all 
those consistent with experiment. 

Fourier inversion selects one particular spatial density 
among all those consistent with the data in a rather 
arbitrary (not necessarily 'best') way: 

(i) The Fourier density has exactly zero values for the 
unmeasured Fourier coefficients. This introduces into the 
reconstructed density spatial correlations for which there 
is no experimental evidence. 

(ii) Those coefficients measured are taken by Fourier 
inversion exactly in the center of the experimental error 
bars, rejecting the important information contained in the 
latter. Indeed, the standard Fourier inversion procedure 
can be generalized to incorporate error bars (Papoular, 
1992), but this improvement alone does not help much. 

By contrast, the maximum-entropy (MaxEnt) method 
(Gull & Daniell, 1978; Skilling & Gull, 1985) was a 
significant advance in inverse problem solving. This 
approach is better justified from the point of view of 
information theory. It allows one to eliminate artifact 
features, use the information contained in the experi- 
mental error bars and reduce image smearing. Since the 
work of Collins (1982), MaxEnt has been widely used in 
crystallography to reconstruct densities (see, for instance, 
Sakata & Sato, 1990; Sakata, Mori Kumazawa & Takata, 
1990; Sakata, Uno, Takata & Moil, 1992; Sakata, Uno, 
Takata & Howard, 1993; Papoular & Schweizer, 1991; 
Papoular, Prandl & Schliebel, 1992; Papoular & Gillon, 
1990b; Papoular, 1992; Papoular, Roth, Heger, Haluska 
& Kuzmany, 1993; Papoular & Delapalme, 1994). It 
turned out to be very useful for spin-density reconstruc- 
tion from polarized neutron diffraction data (Papoular & 
Gillon, 1990a; Papoular & Schweizer, 1991; Papoular & 
Delapalme, 1994). 

Both Fourier inversion and maximum entropy are 
regularization procedures (Press, Teukolskey, Vetterling 
& Flannery, 1992). The superiority of MaxEnt comes 
from its nonlinear character and its ability to provide the 
least correlated density compatible with the data (Livesey 
& Skilling, 1985) as well as to take prior knowledge into 
account whenever available. In practice, one writes 

of information theory, but the quality of the density 
reconstructions is greatly increased. 

Reconstruction of a projected spin density 

In many cases, one can only reconstruct a crystal- 
lographic projection of the scattering density. This may 
be due to certain limitations in the experimental 
geometry. Such limitations are typical for polarized 
neutron diffraction experiments. In the latter, the periodic 
spin density is induced in a single-crystal sample by 
applying a strong magnetic field of a cryomagnet at 
sufficiently low temperature. Owing to the construction 
of the cryostat, the applied field is in the vertical (z) 
direction. The incident neutron beam is in the horizontal 
plane. The detector of the diffracted beam is basically in 
the horizontal plane as well. It may be lifted above the 
plane but only up to a certain angle. The limit is imposed 
by the construction of the cryocoil. As a result, only a 
'thick layer' in reciprocal space is accessible for 
measurements. If the crystal is mounted in the cryostat 
with the c axis vertical, parallel to the applied field, 
typically only hk0, hkl and hk2 flipping ratios may be 
measured. As a result, the spatial resolution along the c 
direction is very low. Nevertheless, a projection onto the 
ab crystallographic plane may be obtained. For this, the 
Fourier inversion formula may be applied: 

S(x, y) = f S(r)dz 

= A -l  Y~ FM(hkO)exp[-2rri(hx + ky)], (4) 
h,k 

where A is the projected surface of the unit cell. Note that 
only the in-plane hk0 Fourier components are included in 
this sum. The 2D reconstruction may be improved by 
using the MaxEnt procedure, but still only a part of the 
data collected is then being used. 

We shall demonstrate that all the 3D data may and 
should be used for the reconstruction of 2D projections. 
For this, first, a complete 3D spin density in the crystal is 
reconstructed using MaxEnt. The obtained density is then 
projected along the c axis. Owing to the non-linear 

Entropy[S(r)] = - f s(r)ln[s(r)]dr 

s(r) = S ( r ) / f  S(r)dr 
(3) 

and the historic MaxEnt algorithm (Gull & Skilling 
1989) is utilized. One maximizes the functional (3) for a 
density distribution defined at points of a grid that splits 
the crystallographic unit cell into pixels. A conditional 
maximum, satisfying some criterion of consistency with 
the experimental data is the MaxEnt solution. In the 
'historical' MaxEnt algorithm, this criterion is chosen 
simply as X 2 < Nobs, which, because (3) is a concave 
functional, is equivalent to a stricter constraint X 2 -- Nobs. 
Not only is the MaxEnt choice more justified in the sense 
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Fig. 1. Structural formula of PNN, the phenyl-substituted ot-nitroso- 
nitroxide free radical. 
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Fig. 2. Spin density in the PNN crystal in projection onto the ab crystallographic plane. (a) 0.0125/tfl/k2 and (b)-(d) 0.025/zj3/k2 contours, negative 
contours dashed. False color (positive densities) and grayscale (negative). (a) Direct inversion from 42 hkO Fourier data. (b) 2D MaxEnt from 42 hkO 
data. (c) 3D MaxEnt using 187 hkl data. (d) 3D MaxEnt using 145 hkl, 1,,,0 data. 
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dependence of the 3D MaxEnt density on the structure 
factors, the contribution of the h k l ,  hk2  etc. reflections 
do not cancel out any longer on projection and do 
contribute to the reconstruction of the projected density. 

A worked-out example 

To illustrate the efficiency of the new technique, we shall 
demonstrate its application to the reconstruction of the 
spin density in an organic free-radical crystal, the phenyl- 
substituted c~-nitrosonitroxide PNN (Fig. 1). This com- 
pound is paramagnetic owing to an unpaired electron 
residing in the 7r* molecular orbital, which has strong 
contributions from the atomic p orbitals of the NO-group 
atoms. Thus, in the crudest molecular-orbital model, the 
spin density is expected to be localized on these atomic 
sites. To find out how exactly the spin density is 
distributed within the molecule, we performed a single- 
crystal polarized neutron diffraction experiment (Re- 
ssouche et al.,  1993; Zheludev et al.,  1994). PNN 
crystallizes in the monoclinic space group P 2 1 / c  (a = 

20.871, b - -  10.150, c - -  12.130A and /3 = 107.15°). 
The asymmetric unit cell contains two crystallographi- 
cally independent PNN molecules. A periodic magneti- 

zation was induced in a single-crystal sample by means 
of a H = 8 T external field at T = 5 K. The crystal was 
mounted with the c axis vertical, parallel to the field. 187 
flipping ratios (all in the reciprocal-space planes 
0 < l < 3), of which 42 were of the type (hk0), that is 
in the horizontal plane, were collected. 

Fig. 2(a) shows the spin density in projection onto the 
ab crystallographic plane reconstructed by Fourier 
inversion (4). The main features (a strong contribution 
from the NO groups) are visible, but the quality of the 
reconstruction is unsatisfactory because: (i) a significant 
density is located at some points rather far from the 
nuclei. This is unphysical and obviously is an artifact; 
(ii) the image is smeared out, since in the diffraction 
experiment the measurements have been performed only 
up to a certain value of sin 0/~.max = 0.42 ,~,-I and only 
the low-k components have been included in (4). 

A 2D historic MaxEnt 32 x 32 grid was used to 
reconstruct the same density from the 42 (hk0) structure 
factors. The result is shown in Fig. 2(b). The improve- 
ment is obvious, the artifacts have disappeared and the 
image is less smeared. 

Then all the 187 hkl  structure factors were used to 
reconstruct a 3D density using historic MaxEnt on a 
32 x 32 x 32 array of pixels. This density was then 
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Fig. 3. Spin density in PNN crystal in 
projection onto the bc crystallo- 
graphic plane. (a) 0.0125~t B ~,-2 
and (b) 0.025ItB,~, -2 contours, 
negative contours dashed. (a) Di- 
rect Fourier inversion. (b) 3D 
MaxEnt. 187 hkl, 0 < l < 3. 



P~APOULAR, ZHELUDEV, RESSOUCHE AND SCHWEIZER 299 

projected onto the ab crystallographic plane using (4). 
The quality of the reconstruction (Fig. 2c) is much 
higher. The individual atoms within the NO groups are 
now discernible. 

It is important to emphasize that the same procedure, 
reconstructing a 3D density and projecting it in 2D, 
would not work with Fourier inversion. In fact, it would 
yield exactly the same map as presented in Fig. 2(a) since 
all the contributions of Fourier components other than 
hkO would be integrated out on projection. 

In principle, the grid resolution should be chosen in 
such a way that the size of each pixel be small compared 
to the experimental resolution, as well as to the size of 
possible features of physical/chemical interest. An extra 
justification for using small-sized pixels is to lessen 
rounding errors when other projections than the one 
along the c axis are sought. In the reconstruction 
described above, the pixel dimensions are 
0.33 × 0.16 × 0.38~, 3, which should be compared to 
kmax/Sin 0 -- 2.4 ,~.. 

The power of the new method is best demonstrated by 
the following striking example. We have artifically 
removed all the hkO structure factors from the data set. 
In this case, Fourier inversion yields a flat featureless 
projected density [S (x ,y )=  0]. Since no 2D data are 
given, this is also the case with 2D MaxEnt, which 
selects the most probable answer in the absence of data - 
again a flat density. These methods are incapable of 
using the 3D data available. On the contrary, '3D 
MaxEnt+ projection' reconstructs the main features of 
the projected density using the 145 out-of-plane data as 
shown in Fig. 2(d). The map speaks for itself: 3D 
MaxEnt is a far better way to extract all the information 
contained in the data. 

Reconstruction of 3D densities 

In the case when only a 'thick layer' in reciprocal space 
is accessible for measurements, the resolution along the z 
axis is very low and 3D densities obtained by Fourier 
inversion are extremely smeared in that direction. In this 
case, the Fourier inversion method is inadequate for 3D 
reconstructions. This is illustrated in Fig. 3(a), which 
shows a projection of a 3D Fourier inversion map 
obtained for PNN onto the bc crystallographic plane. The 
quality of the reconstruction is much lower since the 
resolution along c is very limited, 0 < / <  3. Even 
individual NO groups are indiscernible. 

Applying the MaxEnt procedure reduces the smearing, 
since no long-range spatial correlations are now imposed 
by forcing all the l > 3 Fourier components to be equal 
to zero. The 3D MaxEnt map in projection onto the bc 
plane is shown in Fig. 3(b). Reducing smearing is just the 
desired effect for spin (or charge) densities, which are 
expected to be localized around the nuclei. The effective 
resolution in the third dimension is thus increased. 

Non-crystallographic projections 

Since MaxEnt offers a much enhanced resolution in three 
dimensions, any desired projection or section (not 
necessarily crystallographic) may be sought. This is 
illustrated by the following example. 

To obtain a better view of the spin distribution 
in PNN, a parallelepipedai 'box'  of dimensions 
4.5 × 7.0 × 4 .0A containing one of the two molecules 
was defined. Fig. 4 shows the 3D MaxEnt spin density 
confined in this box in projection onto one of the 
rectangular box faces (the XY plane, which is chosen 
parallel to the molecular O - - N - - C - - N - - O  plane of 
the radical; the direction of orthogonal projection is the Z 
axis). To obtain this projection, a trivial extrapolation of 
the MaxEnt density (defined in a discrete set of cells of a 
32 x 32 x 32 crystallographic 3D grid) to other points of 
space was performed. The value corresponding to each 
cell of the grid was simply assigned to all the points of 
space contained within that cell. The projection was then 
calculated as an integral along Z of the thus-defined 
function of space. The integration procedure used a 
50 × 50 2D grid in the XY plane and 100 integration 
points along Z. 

Concluding remarks 

MaxEnt can and should be used for the reconstruction of 
scattering densities from diffraction data. It allows one to 
select the most probable answer for a given data set and a 
given prior knowledge of the sought density (chosen to 
be uniform in this paper). It is a model-independent 
method, which does not impose any rigid constraints on 
the density to be reconstructed. 

The new 3D MaxEnt is a new step in polarized 
neutron diffraction data treatment: (i) it allows one to use 
all the 3D data available to reconstruct 2D crystal- 
lographic projections; (ii) a projection may be recon- 
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Fig. 4. Spin density in a PNN crystal projected orthogonally onto the 
O - N - C - N - O  molecular plane reconstructed by 3D MaxEnt from 
187 hkl Fourier components. 0 . 0 1 2 5 g ~ ,  -2 contours, negative 
contours dashed. 
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structed even if not one structure factor in the projection 
plane can be measured; (iii) it increases significantly the 
effective resolution in the third dimension, making 
considerably enhanced 3D reconstructions and non- 
crystallographic projections possible. 
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Abstract 

Number theory is used to derive which indices of 
symmetry reduction can occur for maximal isomorphic 
subgroups of space groups belonging to the crystal 
classes mentioned in the title and having unit cells with 
enlarged base vectors a and b. In the case of the crystal 
classes 4, 4 and 4/m, the possible index values are i = p2 
with p = 3  (mod 4), i = 2 and i = p = - - I  (mod 4) 
(p = prime number). In the crystal classes 3, 3, 6, 6 
and 6/m, i = p  2 with p -=  2 (mod 3), i =  3 and 
i = p -  1 (rood 3) are possible. The number of iso- 
morphic subgroups of index i (maximal and non- 
maximal) can be calculated with the formula 
R(i) = Y~ xo(m), where m runs through all divisors of i 
and xo(m) is the Dirichlet character mod IDI; D = - 4  for 
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the tetragonal and D = - 3  for the trigonal and hexagonal 
space groups. X-a(m) is equal to 0 for m -- 0 (mod 2), 1 
for m=p----- 1 (mod 4 ) , - 1  for m = p - 3  (mod 4), 
and the corresponding product for nonprime values of m. 
X-3(m) is equal to 0 for m - - 0  (mod 3), 1 for 
m = p - -  1 (mod 3), - 1  for m=p- - - - -2  (mod 3), and 
their corresponding product for nonprime m. R(i) is the 
number of conjugacy classes, each of which comprises i 
conjugate subgroups (for i > 2). 

Einleitung 

Das auf Hermann (1960) zur0ckgehende und von 
B~irnighausen (1980) entwickelte Konzept zum Aufzei- 
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